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Small scale troubles with LCDM?

 LSB galaxies: 
 - not as dense as predicted
 - core density at ~few kpc

Galaxy Clusters:
 - density profiles are too shallow?
 - core density at ~100 kpc

- strong lensing + stellar kinematics -
Tyson et al. 1998; Sand et al. 2008; 

Newman et al. 2011
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 - not as dense as predicted
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Theory: N>>1000 Observation: Nbright~10

“Missing Satellites Problem”

Klypin et al. 1999; Moore et al. 1999; Kauffmann et al. 1993
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Quantifying Substructure: Subhalos

Garrison-Kimmel, Oñorbe et Irvine 2012

Subhalo

Vmax = peak circular velocity

Vinfall = Vmax before fell in

600 kpc

Minfall = Virial mass before fell in

Record: 
Mass & Vmax at all times 
prior to infall.
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Springel et al. 2008 ; Diemand et al. 2008
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Figure 9. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity. The top panel shows the raw measurements from the
simulations, while in the bottom panel, we have applied the correction of
equation (10) to compensate approximately for the impact of the gravita-
tional softening on Vmax. We show results for five simulations of the Aq-A
halo carried out with differing mass resolution. The dashed line is the fitting
function given for their own simulations by Reed et al. (2005), which also
accurately matches the result for the ‘Via Lactea I’ simulation (Diemand
et al. 2007a). This is clearly inconsistent with our own data.

showing that we are really seeing the same subhaloes, and that
they are reproduced with the same maximum circular velocity in
all the simulations. This suggests that we are also achieving good
convergence for the internal structure of individual subhaloes, an
issue that we will investigate further below.

However, it is worth noting that the individual measurements
for the velocity functions peel away from their higher resolution
counterparts comparatively early at low velocities, which suggests
worse convergence than found for the subhalo mass functions at
the low-mass end. This behaviour can be understood as an effect
of the gravitational softening length ε, which lowers the maximum
circular velocities of subhaloes for which rmax is not much larger
than ε. To estimate the strength of this effect, we can imagine that
the gravitational softening for an existing subhalo is adiabatically

lowered from ε to zero. The angular momentum of individual par-
ticle orbits is then an adiabatic invariant. Assuming for simplicity
that all particles are on circular orbits, and that the gravitational
softening can be approximated as a Plummer force with softening
length ε, the expected change of the maximum circular velocity is
then

V ′
max = Vmax [1 + (ε/rmax)2]1/2. (10)

In the lower panel of Fig. 9, we plot the cumulative velocity func-
tions for these corrected maximum circular velocities. Clearly, the
measurements line up more tightly down to lower Vmax, demonstrat-
ing explicitly that the convergence in the number of objects counted
as a function of (corrected) circular velocity is in principle as good
as that counted as a function of mass. Note that a similar correction
can also be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements from the
simulations without applying a gravitational softening correction.

The dashed line in Fig. 9 shows the fit which Reed et al.
(2005) quote for the subhalo abundance as a function of max-
imum circular velocity in their own simulations, N(>Vmax) =
(1/48)(Vmax,sub/Vmax,host)−3. Diemand et al. (2007a) found this for-
mula to fit the results from their own Via Lactea I simulation very
well. Fig. 9 thus confirms the indication from subhalo mass fractions
that our simulations show substantially more substructure than re-
ported for Via Lactea I. This is particularly evident at lower subhalo
masses which are unaffected by the small number effects which
cause scatter in the abundance of massive subhaloes. With the help
of J. Diemand and his collaborators, we have checked that this abun-
dance difference is not a result of the different subhalo detection
algorithms used in our two projects.

We do not think that this discrepancy can be explained by halo-to-
halo scatter since it is much larger than the variation in substructure
abundance among our own sample of haloes. This is demonstrated
in Fig. 10, which shows the cumulative subhalo abundance dis-
tributions within r50 as a function of maximum subhalo circular
velocity for all our resolution level 2 haloes. We plot subhalo count

Figure 10. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity in units of the circular velocity of the main halo at
r50. We show results for all six of our haloes at resolution level 2, and in
addition we include our highest resolution result for the Aq-A-1 run. For
comparison, we overplot fitting functions for the Via Lactea I and Via Lactea
II simulations (Diemand et al. 2007a, 2008), appropriately rescaled from a
normalization to Vmax,host to one by V50,host.
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SDSS DR 7
(Abazajian et al. 2009, Li 
& White 2009)

n(> M?) = n(> Vinfall)

Millennium-II 
simulations 
Boylan-Kolchin et al. 2009
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Galaxy formation efficiency
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Milky Way 2012
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Probably ~100’s more faint dwarfs to be discovered

See also:
Koposov et al. 2007, Walsh et al. 2009, JSB et al. 2010

Tollerud et al. 08

Stadel et al. 2009
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Figure 9. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity. The top panel shows the raw measurements from the
simulations, while in the bottom panel, we have applied the correction of
equation (10) to compensate approximately for the impact of the gravita-
tional softening on Vmax. We show results for five simulations of the Aq-A
halo carried out with differing mass resolution. The dashed line is the fitting
function given for their own simulations by Reed et al. (2005), which also
accurately matches the result for the ‘Via Lactea I’ simulation (Diemand
et al. 2007a). This is clearly inconsistent with our own data.

showing that we are really seeing the same subhaloes, and that
they are reproduced with the same maximum circular velocity in
all the simulations. This suggests that we are also achieving good
convergence for the internal structure of individual subhaloes, an
issue that we will investigate further below.

However, it is worth noting that the individual measurements
for the velocity functions peel away from their higher resolution
counterparts comparatively early at low velocities, which suggests
worse convergence than found for the subhalo mass functions at
the low-mass end. This behaviour can be understood as an effect
of the gravitational softening length ε, which lowers the maximum
circular velocities of subhaloes for which rmax is not much larger
than ε. To estimate the strength of this effect, we can imagine that
the gravitational softening for an existing subhalo is adiabatically

lowered from ε to zero. The angular momentum of individual par-
ticle orbits is then an adiabatic invariant. Assuming for simplicity
that all particles are on circular orbits, and that the gravitational
softening can be approximated as a Plummer force with softening
length ε, the expected change of the maximum circular velocity is
then

V ′
max = Vmax [1 + (ε/rmax)2]1/2. (10)

In the lower panel of Fig. 9, we plot the cumulative velocity func-
tions for these corrected maximum circular velocities. Clearly, the
measurements line up more tightly down to lower Vmax, demonstrat-
ing explicitly that the convergence in the number of objects counted
as a function of (corrected) circular velocity is in principle as good
as that counted as a function of mass. Note that a similar correction
can also be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements from the
simulations without applying a gravitational softening correction.

The dashed line in Fig. 9 shows the fit which Reed et al.
(2005) quote for the subhalo abundance as a function of max-
imum circular velocity in their own simulations, N(>Vmax) =
(1/48)(Vmax,sub/Vmax,host)−3. Diemand et al. (2007a) found this for-
mula to fit the results from their own Via Lactea I simulation very
well. Fig. 9 thus confirms the indication from subhalo mass fractions
that our simulations show substantially more substructure than re-
ported for Via Lactea I. This is particularly evident at lower subhalo
masses which are unaffected by the small number effects which
cause scatter in the abundance of massive subhaloes. With the help
of J. Diemand and his collaborators, we have checked that this abun-
dance difference is not a result of the different subhalo detection
algorithms used in our two projects.

We do not think that this discrepancy can be explained by halo-to-
halo scatter since it is much larger than the variation in substructure
abundance among our own sample of haloes. This is demonstrated
in Fig. 10, which shows the cumulative subhalo abundance dis-
tributions within r50 as a function of maximum subhalo circular
velocity for all our resolution level 2 haloes. We plot subhalo count

Figure 10. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity in units of the circular velocity of the main halo at
r50. We show results for all six of our haloes at resolution level 2, and in
addition we include our highest resolution result for the Aq-A-1 run. For
comparison, we overplot fitting functions for the Via Lactea I and Via Lactea
II simulations (Diemand et al. 2007a, 2008), appropriately rescaled from a
normalization to Vmax,host to one by V50,host.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1685–1711

V
infall

/V
host

Springel et al. 2008 
(Aquarius project)

1.5 15 150

Vinfall [km/s]

A seductive story...

10

1

100

1000

10,000

cu
m

ul
at

iv
e 

nu
m

be
r 

100,000



 J. Bullock, UC Irvine         

The Aquarius Project 1695

Figure 9. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity. The top panel shows the raw measurements from the
simulations, while in the bottom panel, we have applied the correction of
equation (10) to compensate approximately for the impact of the gravita-
tional softening on Vmax. We show results for five simulations of the Aq-A
halo carried out with differing mass resolution. The dashed line is the fitting
function given for their own simulations by Reed et al. (2005), which also
accurately matches the result for the ‘Via Lactea I’ simulation (Diemand
et al. 2007a). This is clearly inconsistent with our own data.

showing that we are really seeing the same subhaloes, and that
they are reproduced with the same maximum circular velocity in
all the simulations. This suggests that we are also achieving good
convergence for the internal structure of individual subhaloes, an
issue that we will investigate further below.

However, it is worth noting that the individual measurements
for the velocity functions peel away from their higher resolution
counterparts comparatively early at low velocities, which suggests
worse convergence than found for the subhalo mass functions at
the low-mass end. This behaviour can be understood as an effect
of the gravitational softening length ε, which lowers the maximum
circular velocities of subhaloes for which rmax is not much larger
than ε. To estimate the strength of this effect, we can imagine that
the gravitational softening for an existing subhalo is adiabatically

lowered from ε to zero. The angular momentum of individual par-
ticle orbits is then an adiabatic invariant. Assuming for simplicity
that all particles are on circular orbits, and that the gravitational
softening can be approximated as a Plummer force with softening
length ε, the expected change of the maximum circular velocity is
then

V ′
max = Vmax [1 + (ε/rmax)2]1/2. (10)

In the lower panel of Fig. 9, we plot the cumulative velocity func-
tions for these corrected maximum circular velocities. Clearly, the
measurements line up more tightly down to lower Vmax, demonstrat-
ing explicitly that the convergence in the number of objects counted
as a function of (corrected) circular velocity is in principle as good
as that counted as a function of mass. Note that a similar correction
can also be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements from the
simulations without applying a gravitational softening correction.

The dashed line in Fig. 9 shows the fit which Reed et al.
(2005) quote for the subhalo abundance as a function of max-
imum circular velocity in their own simulations, N(>Vmax) =
(1/48)(Vmax,sub/Vmax,host)−3. Diemand et al. (2007a) found this for-
mula to fit the results from their own Via Lactea I simulation very
well. Fig. 9 thus confirms the indication from subhalo mass fractions
that our simulations show substantially more substructure than re-
ported for Via Lactea I. This is particularly evident at lower subhalo
masses which are unaffected by the small number effects which
cause scatter in the abundance of massive subhaloes. With the help
of J. Diemand and his collaborators, we have checked that this abun-
dance difference is not a result of the different subhalo detection
algorithms used in our two projects.

We do not think that this discrepancy can be explained by halo-to-
halo scatter since it is much larger than the variation in substructure
abundance among our own sample of haloes. This is demonstrated
in Fig. 10, which shows the cumulative subhalo abundance dis-
tributions within r50 as a function of maximum subhalo circular
velocity for all our resolution level 2 haloes. We plot subhalo count

Figure 10. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity in units of the circular velocity of the main halo at
r50. We show results for all six of our haloes at resolution level 2, and in
addition we include our highest resolution result for the Aq-A-1 run. For
comparison, we overplot fitting functions for the Via Lactea I and Via Lactea
II simulations (Diemand et al. 2007a, 2008), appropriately rescaled from a
normalization to Vmax,host to one by V50,host.
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Figure 9. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity. The top panel shows the raw measurements from the
simulations, while in the bottom panel, we have applied the correction of
equation (10) to compensate approximately for the impact of the gravita-
tional softening on Vmax. We show results for five simulations of the Aq-A
halo carried out with differing mass resolution. The dashed line is the fitting
function given for their own simulations by Reed et al. (2005), which also
accurately matches the result for the ‘Via Lactea I’ simulation (Diemand
et al. 2007a). This is clearly inconsistent with our own data.

showing that we are really seeing the same subhaloes, and that
they are reproduced with the same maximum circular velocity in
all the simulations. This suggests that we are also achieving good
convergence for the internal structure of individual subhaloes, an
issue that we will investigate further below.

However, it is worth noting that the individual measurements
for the velocity functions peel away from their higher resolution
counterparts comparatively early at low velocities, which suggests
worse convergence than found for the subhalo mass functions at
the low-mass end. This behaviour can be understood as an effect
of the gravitational softening length ε, which lowers the maximum
circular velocities of subhaloes for which rmax is not much larger
than ε. To estimate the strength of this effect, we can imagine that
the gravitational softening for an existing subhalo is adiabatically

lowered from ε to zero. The angular momentum of individual par-
ticle orbits is then an adiabatic invariant. Assuming for simplicity
that all particles are on circular orbits, and that the gravitational
softening can be approximated as a Plummer force with softening
length ε, the expected change of the maximum circular velocity is
then

V ′
max = Vmax [1 + (ε/rmax)2]1/2. (10)

In the lower panel of Fig. 9, we plot the cumulative velocity func-
tions for these corrected maximum circular velocities. Clearly, the
measurements line up more tightly down to lower Vmax, demonstrat-
ing explicitly that the convergence in the number of objects counted
as a function of (corrected) circular velocity is in principle as good
as that counted as a function of mass. Note that a similar correction
can also be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements from the
simulations without applying a gravitational softening correction.

The dashed line in Fig. 9 shows the fit which Reed et al.
(2005) quote for the subhalo abundance as a function of max-
imum circular velocity in their own simulations, N(>Vmax) =
(1/48)(Vmax,sub/Vmax,host)−3. Diemand et al. (2007a) found this for-
mula to fit the results from their own Via Lactea I simulation very
well. Fig. 9 thus confirms the indication from subhalo mass fractions
that our simulations show substantially more substructure than re-
ported for Via Lactea I. This is particularly evident at lower subhalo
masses which are unaffected by the small number effects which
cause scatter in the abundance of massive subhaloes. With the help
of J. Diemand and his collaborators, we have checked that this abun-
dance difference is not a result of the different subhalo detection
algorithms used in our two projects.

We do not think that this discrepancy can be explained by halo-to-
halo scatter since it is much larger than the variation in substructure
abundance among our own sample of haloes. This is demonstrated
in Fig. 10, which shows the cumulative subhalo abundance dis-
tributions within r50 as a function of maximum subhalo circular
velocity for all our resolution level 2 haloes. We plot subhalo count

Figure 10. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity in units of the circular velocity of the main halo at
r50. We show results for all six of our haloes at resolution level 2, and in
addition we include our highest resolution result for the Aq-A-1 run. For
comparison, we overplot fitting functions for the Via Lactea I and Via Lactea
II simulations (Diemand et al. 2007a, 2008), appropriately rescaled from a
normalization to Vmax,host to one by V50,host.
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Figure 9. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity. The top panel shows the raw measurements from the
simulations, while in the bottom panel, we have applied the correction of
equation (10) to compensate approximately for the impact of the gravita-
tional softening on Vmax. We show results for five simulations of the Aq-A
halo carried out with differing mass resolution. The dashed line is the fitting
function given for their own simulations by Reed et al. (2005), which also
accurately matches the result for the ‘Via Lactea I’ simulation (Diemand
et al. 2007a). This is clearly inconsistent with our own data.

showing that we are really seeing the same subhaloes, and that
they are reproduced with the same maximum circular velocity in
all the simulations. This suggests that we are also achieving good
convergence for the internal structure of individual subhaloes, an
issue that we will investigate further below.

However, it is worth noting that the individual measurements
for the velocity functions peel away from their higher resolution
counterparts comparatively early at low velocities, which suggests
worse convergence than found for the subhalo mass functions at
the low-mass end. This behaviour can be understood as an effect
of the gravitational softening length ε, which lowers the maximum
circular velocities of subhaloes for which rmax is not much larger
than ε. To estimate the strength of this effect, we can imagine that
the gravitational softening for an existing subhalo is adiabatically

lowered from ε to zero. The angular momentum of individual par-
ticle orbits is then an adiabatic invariant. Assuming for simplicity
that all particles are on circular orbits, and that the gravitational
softening can be approximated as a Plummer force with softening
length ε, the expected change of the maximum circular velocity is
then

V ′
max = Vmax [1 + (ε/rmax)2]1/2. (10)

In the lower panel of Fig. 9, we plot the cumulative velocity func-
tions for these corrected maximum circular velocities. Clearly, the
measurements line up more tightly down to lower Vmax, demonstrat-
ing explicitly that the convergence in the number of objects counted
as a function of (corrected) circular velocity is in principle as good
as that counted as a function of mass. Note that a similar correction
can also be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements from the
simulations without applying a gravitational softening correction.

The dashed line in Fig. 9 shows the fit which Reed et al.
(2005) quote for the subhalo abundance as a function of max-
imum circular velocity in their own simulations, N(>Vmax) =
(1/48)(Vmax,sub/Vmax,host)−3. Diemand et al. (2007a) found this for-
mula to fit the results from their own Via Lactea I simulation very
well. Fig. 9 thus confirms the indication from subhalo mass fractions
that our simulations show substantially more substructure than re-
ported for Via Lactea I. This is particularly evident at lower subhalo
masses which are unaffected by the small number effects which
cause scatter in the abundance of massive subhaloes. With the help
of J. Diemand and his collaborators, we have checked that this abun-
dance difference is not a result of the different subhalo detection
algorithms used in our two projects.

We do not think that this discrepancy can be explained by halo-to-
halo scatter since it is much larger than the variation in substructure
abundance among our own sample of haloes. This is demonstrated
in Fig. 10, which shows the cumulative subhalo abundance dis-
tributions within r50 as a function of maximum subhalo circular
velocity for all our resolution level 2 haloes. We plot subhalo count

Figure 10. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity in units of the circular velocity of the main halo at
r50. We show results for all six of our haloes at resolution level 2, and in
addition we include our highest resolution result for the Aq-A-1 run. For
comparison, we overplot fitting functions for the Via Lactea I and Via Lactea
II simulations (Diemand et al. 2007a, 2008), appropriately rescaled from a
normalization to Vmax,host to one by V50,host.
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Figure 9. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity. The top panel shows the raw measurements from the
simulations, while in the bottom panel, we have applied the correction of
equation (10) to compensate approximately for the impact of the gravita-
tional softening on Vmax. We show results for five simulations of the Aq-A
halo carried out with differing mass resolution. The dashed line is the fitting
function given for their own simulations by Reed et al. (2005), which also
accurately matches the result for the ‘Via Lactea I’ simulation (Diemand
et al. 2007a). This is clearly inconsistent with our own data.

showing that we are really seeing the same subhaloes, and that
they are reproduced with the same maximum circular velocity in
all the simulations. This suggests that we are also achieving good
convergence for the internal structure of individual subhaloes, an
issue that we will investigate further below.

However, it is worth noting that the individual measurements
for the velocity functions peel away from their higher resolution
counterparts comparatively early at low velocities, which suggests
worse convergence than found for the subhalo mass functions at
the low-mass end. This behaviour can be understood as an effect
of the gravitational softening length ε, which lowers the maximum
circular velocities of subhaloes for which rmax is not much larger
than ε. To estimate the strength of this effect, we can imagine that
the gravitational softening for an existing subhalo is adiabatically

lowered from ε to zero. The angular momentum of individual par-
ticle orbits is then an adiabatic invariant. Assuming for simplicity
that all particles are on circular orbits, and that the gravitational
softening can be approximated as a Plummer force with softening
length ε, the expected change of the maximum circular velocity is
then

V ′
max = Vmax [1 + (ε/rmax)2]1/2. (10)

In the lower panel of Fig. 9, we plot the cumulative velocity func-
tions for these corrected maximum circular velocities. Clearly, the
measurements line up more tightly down to lower Vmax, demonstrat-
ing explicitly that the convergence in the number of objects counted
as a function of (corrected) circular velocity is in principle as good
as that counted as a function of mass. Note that a similar correction
can also be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements from the
simulations without applying a gravitational softening correction.

The dashed line in Fig. 9 shows the fit which Reed et al.
(2005) quote for the subhalo abundance as a function of max-
imum circular velocity in their own simulations, N(>Vmax) =
(1/48)(Vmax,sub/Vmax,host)−3. Diemand et al. (2007a) found this for-
mula to fit the results from their own Via Lactea I simulation very
well. Fig. 9 thus confirms the indication from subhalo mass fractions
that our simulations show substantially more substructure than re-
ported for Via Lactea I. This is particularly evident at lower subhalo
masses which are unaffected by the small number effects which
cause scatter in the abundance of massive subhaloes. With the help
of J. Diemand and his collaborators, we have checked that this abun-
dance difference is not a result of the different subhalo detection
algorithms used in our two projects.

We do not think that this discrepancy can be explained by halo-to-
halo scatter since it is much larger than the variation in substructure
abundance among our own sample of haloes. This is demonstrated
in Fig. 10, which shows the cumulative subhalo abundance dis-
tributions within r50 as a function of maximum subhalo circular
velocity for all our resolution level 2 haloes. We plot subhalo count

Figure 10. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity in units of the circular velocity of the main halo at
r50. We show results for all six of our haloes at resolution level 2, and in
addition we include our highest resolution result for the Aq-A-1 run. For
comparison, we overplot fitting functions for the Via Lactea I and Via Lactea
II simulations (Diemand et al. 2007a, 2008), appropriately rescaled from a
normalization to Vmax,host to one by V50,host.
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Figure 9. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity. The top panel shows the raw measurements from the
simulations, while in the bottom panel, we have applied the correction of
equation (10) to compensate approximately for the impact of the gravita-
tional softening on Vmax. We show results for five simulations of the Aq-A
halo carried out with differing mass resolution. The dashed line is the fitting
function given for their own simulations by Reed et al. (2005), which also
accurately matches the result for the ‘Via Lactea I’ simulation (Diemand
et al. 2007a). This is clearly inconsistent with our own data.

showing that we are really seeing the same subhaloes, and that
they are reproduced with the same maximum circular velocity in
all the simulations. This suggests that we are also achieving good
convergence for the internal structure of individual subhaloes, an
issue that we will investigate further below.

However, it is worth noting that the individual measurements
for the velocity functions peel away from their higher resolution
counterparts comparatively early at low velocities, which suggests
worse convergence than found for the subhalo mass functions at
the low-mass end. This behaviour can be understood as an effect
of the gravitational softening length ε, which lowers the maximum
circular velocities of subhaloes for which rmax is not much larger
than ε. To estimate the strength of this effect, we can imagine that
the gravitational softening for an existing subhalo is adiabatically

lowered from ε to zero. The angular momentum of individual par-
ticle orbits is then an adiabatic invariant. Assuming for simplicity
that all particles are on circular orbits, and that the gravitational
softening can be approximated as a Plummer force with softening
length ε, the expected change of the maximum circular velocity is
then

V ′
max = Vmax [1 + (ε/rmax)2]1/2. (10)

In the lower panel of Fig. 9, we plot the cumulative velocity func-
tions for these corrected maximum circular velocities. Clearly, the
measurements line up more tightly down to lower Vmax, demonstrat-
ing explicitly that the convergence in the number of objects counted
as a function of (corrected) circular velocity is in principle as good
as that counted as a function of mass. Note that a similar correction
can also be applied to the measured rmax values. However, for the
remainder of this paper, we focus on the raw measurements from the
simulations without applying a gravitational softening correction.

The dashed line in Fig. 9 shows the fit which Reed et al.
(2005) quote for the subhalo abundance as a function of max-
imum circular velocity in their own simulations, N(>Vmax) =
(1/48)(Vmax,sub/Vmax,host)−3. Diemand et al. (2007a) found this for-
mula to fit the results from their own Via Lactea I simulation very
well. Fig. 9 thus confirms the indication from subhalo mass fractions
that our simulations show substantially more substructure than re-
ported for Via Lactea I. This is particularly evident at lower subhalo
masses which are unaffected by the small number effects which
cause scatter in the abundance of massive subhaloes. With the help
of J. Diemand and his collaborators, we have checked that this abun-
dance difference is not a result of the different subhalo detection
algorithms used in our two projects.

We do not think that this discrepancy can be explained by halo-to-
halo scatter since it is much larger than the variation in substructure
abundance among our own sample of haloes. This is demonstrated
in Fig. 10, which shows the cumulative subhalo abundance dis-
tributions within r50 as a function of maximum subhalo circular
velocity for all our resolution level 2 haloes. We plot subhalo count

Figure 10. Cumulative subhalo abundance as a function of maximum sub-
halo circular velocity in units of the circular velocity of the main halo at
r50. We show results for all six of our haloes at resolution level 2, and in
addition we include our highest resolution result for the Aq-A-1 run. For
comparison, we overplot fitting functions for the Via Lactea I and Via Lactea
II simulations (Diemand et al. 2007a, 2008), appropriately rescaled from a
normalization to Vmax,host to one by V50,host.
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Abundance Matching: can reproduce obs. LF

Boylan-Kolchin et al. 2011b

Data M31
Data MW

Theory
6 Aq. Halos



Theory: N>>1000 Observation: Nbright~10

Klypin et al. 1999

How do the masses compare?
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Abundance Matching: can reproduce obs. LF

Boylan-Kolchin et al. 2011b

Data M31
Data MW

Theory
6 Aq. Halos
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Abundance Matching: can reproduce obs. LF

Data MW

Boylan-Kolchin et al. 2011b

c.f. Strigari et al. 2008
“common mass”

Data

Theory
Abundance Matching

Theory
Abundance Matching
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Wolf et al. 2010

Dynamical masses at r1/2 known to ~20% for bright dwarfs

Vc(r1/2) =
p

3 �⇤

See also:
Walker et al. 2009
Strigari et al. 2007

Carina
Stars from Walker

W+10 estimator agrees with axisymmetric 
Schwarzschild modeling by Thomas et al. 2011  
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Example of kinematic constraint: Draco

Vc(r1/2) =
p

3 �⇤ ' 17 km s�1
Wolf et al. 2010 →

r1/2 =291 pc

V1/2 =17 km/s
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Example of kinematic constraint: Draco

Vc(r1/2) =
p

3 �⇤ ' 17 km s�1

r1/2 =291 pc

V1/2 =17 km/s

Wolf et al. 2010 →
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Example of kinematic constraint: Draco

Vc(r1/2) =
p

3 �⇤ ' 17 km s�1

8 biggest subhalos
> 2σ too dense

Springel et al. 2008 
(Aquarius project)

Wolf et al. 2010 →
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All bright MW dSphs (L>105 Lsun)

8 biggest subhalos are 
too dense to host ANY 
of MW dSph satellites

8 biggest subhalos
(remove LMC/SMC analogs)
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All bright MW dSphs (L>105 Lsun)

Plotted: all halos with Vinfall > 30km/s
~15 are unaccounted for

L~3.e5 Lsun

Boylan-Kolchin et al. 2011, 2012
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All bright MW dSphs (L>105 Lsun)

Massive Failures:
Vinfall = 30-70 km/s

Plotted: all halos with Vinfall > 30km/s
~15 are unaccounted for

Boylan-Kolchin et al. 2011, 2012
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Six Aquarius Halos: ~10-20 massive failures each

Boylan-Kolchin et al. 2011a,b
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For subhalos that can match dSphs: how big at infall?

Vinfall = 15-25 km/s 
for all MW dSphs
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Stellar Mass 

fbaryon*Mdm 

Galaxy formation efficiency

Fornax
M* ~ 3.107 Msun

?
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Stellar Mass 

fbaryon*Mdm 

Galaxy formation efficiency

?

Fornax
M* ~ 3.107 Msun



 J. Bullock, UC Irvine

Stellar Mass 

fbaryon*Mdm 

Galaxy formation efficiency

Boylan-Kolchin et al. 2011, 2012
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Stellar Mass 

fbaryon*Mdm 

Galaxy formation efficiency

Boylan-Kolchin et al. 2011a,b

Density of Fornax 
suggests that it is 
just as efficient at 
forming stars as 
the Milky Way!
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Boylan-Kolchin et al. 2012
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Boylan-Kolchin et al. 2012
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Boylan-Kolchin et al. 2012
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Options

Option 0 The Milky Way is weird.
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New Data: M31 dSph population

Tollerud, Boylan-
Kolchin, JSB, in prep

Erik Tollerud
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Options

Option 0 The Milky Way is weird.
M31 would have to be weird too.
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Options

Option 1

Galaxy formation is effectively stochastic in small(ish) 
dark matter halos (Vmax ≲ 50 km/s).   

Option 2

Baryonic effects lower densities in the centers of L~106 

Lsun galaxies. 

Option 3

Dark matter is not so simple.  Self-interacting?  
Something changes small-scale behavior. 
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Options

➔ Huge scatter in 
luminosity-mass relationship.
➔ factor of ~1000 variation 
in luminosity at fixed halo 
mass...

Problem with option 1

Option 1

Galaxy formation is effectively stochastic in small(ish) 
dark matter halos (Vmax ≲ 50 km/s).   
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8 biggest subhalos

Draco

Option 2

Feedback?
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Boylan-Kolchin et al. 2012

DM blow-out needed to fix the problem

Standard blow-out physics
Mremove ~ M✷
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L~3.e5 Lsun

Need to expel >100 times 
current stellar mass to 
lower density enough.

Boylan-Kolchin et al. 2012
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Dark matter
mass removed

(Msun)

Total gas mass blown out (Msun)

10 bursts
1 burst

Garrison-Kimmel, Jally, et al., in prep. 
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Dark matter
mass removed

(Msun)

Total gas mass blown out (Msun)

10 bursts
1 burst

Garrison-Kimmel, Jally, et al., in prep. 

stellar 
mass

removal needed

Baryon budget
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Options

Option 2

Baryonic effects lower densities in the centers of L~106 

Lsun galaxies. 

Problem with option 2

Galaxies with L~5.105Lsun need to have removed 
~107Msun of dark matter.

Standard blow-out physics: Mremove ~ M✷ formed
(true, e.g., for Pontzen & Governato 2012)
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Options

Option 3 Dark matter is not so simple. 
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Options

Option 3

Particle mass is not so big?  CDM: 

WDM:

mdm ! 1
mdm ⇠ keV

Self-interaction not so small? CDM: �/mdm ! 0

SIDM: �/mdm ⇠ 1 cm2/g

Dark matter is not so simple. 
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Options

Option 3

Just consistent with Ly-alpha forest --> Barely solves problem (Lovell et al. 2011)
+ Possibly NOT ENOUGH substructure.
+ How reionize the universe @ z~10?

Warm Dark Matter?
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Options

Option 3 Self-interacting dark matter
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Simula3ng	  Self-‐interac3ng	  CDM

Miguel	  Rocha Annika	  Peter Manoj	  Kaplinghat

Scattering rate:

Carlson et al. (1992); Spergel & Steinhardt (2000); Kochanek & White (2000); Feng et al. 
(2009); Loeb & Weiner (2011); Vogelsberger et al. (2012)

Interesting things happen when

Long mean-free paths: monte-carlo method
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m
⇠ 1 cm2/g

Simula3ng	  Self-‐interac3ng	  CDM

Miguel	  Rocha Annika	  Peter Manoj	  Kaplinghat

Scattering rate:

lower density 
cores in DM halos

Carlson et al. (1992); Spergel & Steinhardt (2000); Kochanek & White (2000); Feng et al. 
(2009); Loeb & Weiner (2011); Vogelsberger et al. (2012)
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Λ+CDM Λ+SIDM
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Miguel	  Rocha Annika	  Peter Manoj	  Kaplinghat

Λ+CDM Λ+SIDM

Iden3cal	  large-‐scale	  structure
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	  σ/m	  =	  1	  cm2	  /g
Λ+CDM Λ+SIDM

SIDM	  Halos	  =	  *slightly*	  rounder
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  	  constant-‐density	  cores
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	  σ/m	  =	  1	  cm2	  /g
CDM SIDM

Rocha et al.; Peter et al.
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SIDM Density Profiles: Cored Halos

Rocha et al., in prep
Peter et al., in prep

SIDM

SIDM

CDM

CDM
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Problems with CDM

Cluster lensingLSB rotationdSph densities

Boylan-Kolchin et al. 2011 Kuzio de Naray et al. 2008 Sand et al. 2008

~1 kpc cores ~5 kpc cores ~100 kpc cores
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SIDM: Substructure survives

CDM = solid
SIDM = dashed

Rocha et al., in prep



Dark Matter

Normal Matter
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Dark Energy
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Normal Matter
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This piece of the pie is 
very interesting...



Normal Matter
5%

Dark Matter
25%

Maybe this one is too...
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Thanks


